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ABSTRACT

Modern deep learning systems struggle in continual learning settings due to plasticity loss—the
gradual decline in the ability of a neural network learning system to change its output in response
to new information. Although periodically resetting a neural network, in whole or in part, has been
shown to restore plasticity, it causes performance to temporarily collapse, which can be dangerous
in real-world settings. To address this, we propose a simple and general method: AltNet, a reset-
based-alternating network approach. AltNet maintains two neural networks that periodically switch
roles: one actively interacts with the environment, while the other learns off-policy from the active
agent’s interactions and a replay buffer. At fixed intervals, the active network is reset, and the
passive network—having learned from recent experience—becomes the new active network. This
alternating reset-and-role-switch strategy supports continual learning by preserving both plasticity
and performance.

1 INTRODUCTION

Humans are lifelong learners, continually acquiring new skills while retaining and refining prior knowledge. In contrast,
most machine learning systems are optimized for a single task and then learning is stopped. For agents operating in
changing environments, learning must be an ongoing process of adaptation rather than the pursuit of a fixed solution
(Abel et al., 2023). This perspective motivates the field of continual learning, which aims to develop agents that can
learn effectively throughout their operational lifespan. Continual learning faces two core challenges: catastrophic
forgetting—the abrupt loss of previously acquired information when learning new data, and plasticity loss—the observed
reduction in agent’s ability to learn from new experiences.

Continual Learning is a fundamental aspect of Reinforcement Learning (RL). This paper focuses on addressing plasticity
loss in RL, while preserving performance and learning progress. In the next section, we begin by examining certain
challenges in deep reinforcement learning, including changes in data distributions caused by an agent’s policy updates,
design decisions related to replay ratio, and early training dynamics—all of which can contribute to or aggravate
plasticity loss. Building on insights and observations from this analysis, we introduce AltNet: a novel method designed
to mitigate plasticity loss while preserving both performance and learning progress.

1.1 NON-STATIONARITY AND ITS IMPACT ON PLASTICITY

Deep learning methods have shown remarkable success in supervised learning, when training from fixed datasets and
stationary environments (Hadsell et al., 2020). However, when a neural network is trained on multiple tasks presented
sequentially, its ability to learn progressively declines with each additional task (Dohare et al., 2024; Lyle et al., 2022).
This highlights a core limitation of many deep learning methods: they are less effective in the face of non-stationary data
sources. This gradual decline in learning ability, exacerbated by training on non-stationary data, is known as plasticity
loss. In other words, while a freshly initialized network might be trained to solve a new task, a fully or partially trained
network may become too rigid to learn from new data (Dohare et al., 2024).

Reinforcement learning (RL) shares many similarities with non-stationary supervised learning settings. RL agents
learn by interacting with the environment, gradually improving their policies. As policies evolve, so does the agent’s
behavior, thus shifting the distribution of experiences it encounters. In addition to the non-stationarity affecting the
distribution of inputs experienced by the agent, the learning process itself introduces non-stationarity: many RL
algorithms, for instance, use bootstrapping—a process by which an agent learns from its own evolving predictions
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of expected future rewards. As learning progresses, these predictions—which serve as learning targets—also change,
thereby introducing target non-stationarity. Due to the non-stationarity of both inputs and targets, the agent continually
adapts to a changing distribution of data, even within a single task, and this non-stationarity can reveal and exacerbate
plasticity loss. Empirically, these effects have been observed in deep RL settings where agent’s learning capabilities
often become less effective compared to agents with freshly initialized networks under similar conditions (Nikishin
etal., 2022).

1.2 REPLAY RATIO AND PLASTICITY LOSS

In RL, agents learn directly from interaction with the environment, which is a lengthy and costly process, particularly
in real-world domains like robotics. To maximize the information gained from each interaction, practitioners often
use experience replay buffers and increase the replay ratio—the number of gradient updates performed after each
interaction with the environment (Fedus et al., 2020; Wang et al., 2016). This allows agents to repeatedly learn from
past experiences, which has been compared to the brain replaying memories in sleep to consolidate learning (Wilson &
McNaughton, 1994).

High replay ratios have been shown to significantly improve sample efficiency (D’Oro et al., 2022). However, when
using a high replay ratio, more updates are performed after each new experience, which accelerates plasticity loss
(D’Oro et al., 2022), reducing the agent’s ability to learn (Nikishin et al., 2022). Moreover, because the agent gathers
data incrementally, early experiences are statistically more likely to be replayed than newer ones—an issue amplified by
higher replay ratios. This results in Primacy Bias, a phenomenon where the agent overfits to early experiences (Nikishin
et al., 2022). While increasing the replay ratio improves sample efficiency, it can undermine long-term learning by
reducing the agent’s adaptability. As a result, there is a point after which further increasing the replay ratio leads to
decrease in performance (see Figure 1).

To address this, Nikishin et al. (2022) propose fully resetting networks to induce plasticity and allow the use of higher
replay ratios. However, such resetting causes sudden behavioral change and often leads to a drop in performance.
Several authors (Ash & Adams, 2020; Dohare et al., 2021; Kim et al., 2023) have proposed methods that increase
plasticity without incurring such dramatic changes in performance during the learning process.
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Figure 1: Learning curves of SAC in hopper—-hop domain in DeepMind Control Suite (DMC) (Tassa et al., 2018)
when using various replay ratios. Increasing the replay ratio (RR) improves performance (RR from 1 to 8); performance
degrades for higher replay ratios; e.g. RR = 32. Shaded regions represent standard error across 10 seeds.

1.3 THE IMPACT OF EARLY TRAINING DYNAMICS ON LONG-TERM ADAPTABILITY

Neural networks are highly sensitive to the data they are trained on shortly after initialization. Achille et al. (2017)
showed that a neural network initially trained on a reduced-quality dataset—specifically blurred, low-quality images—
struggles to achieve high performance even when later exposed to high-quality images. They concluded that internal
representations acquired early in the training are difficult to unlearn and thus constrain future adaptability to new data.

This phenomenon has important consequences in reinforcement learning, where agents are initialized with no prior
knowledge and must explore the environment through trial and error. As a result, the data they collect earlier in training
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is typically generated by a primitive, poor-quality policy (i.e. an unskilled agent) and may limit the potential learning
capabilities of the agent later in the training process. While initial experiences shape learning, Kumar et al. (2020)
showed that repeated bootstrapping on updates based on suboptimal value estimates can limit the expressivity of the
network and harm long-term performance even if they occur later in training.

2 RELATED WORK

Many neural network initialization methods produce highly plastic networks (Glorot & Bengio, 2010; Sutskever et al.,
2013). However, as mentioned earlier, when neural networks are trained on a non-stationary objectives they exhibit
plasticity loss (Dohare et al., 2021; Lyle et al., 2022). Nikishin et al. (2022) introduced periodic resets (network
re-initialization) during training to induce plasticity. However, resetting comes at a cost, as it destroys the information
embedded in the trained network, thus leading to sharp performance drops (see Figure 3, orange curve). Although
leveraging experience replay buffer helps to recover from such information loss by allowing recently-reset networks to
rapidly train based on historical data, frequent full resets remain impractical for settings where behavioral stability is
critical. This observation reflects a central trade-off in continual learning, known as the plasticity vs. stability dilemma
(Nakamura et al., 2000). This phenomenon has also been observed in biological networks (Abraham & Robins, 2005).

Several methods have been proposed to balance plasticity and stability without resorting to full network resets. Shrink
and Perturb (Ash & Adams, 2020) interpolates between its current parameters and random values drawn from the
initial parameter distribution, and can be interpreted as a form of gradual resetting, increasing plasticity and reducing
performance degradation. Continual Backprop (Dohare et al., 2021) and ReDo (Sokar et al., 2023) similarly avoid
full resets by selectively resetting the weights of “low-utility” neurons. Although empirically effective, these methods
incur substantial computational overhead as they individually track the activations of each neuron. Plasticity Injection
(Nikishin et al., 2023) does not track any measure of utility and instead resets the last layers of a network in a specific
way ensuring not to change its outputs. However, none of these approaches are capable of fully recovering the plasticity
achieved by fully resetting a network’s parameters.

Reset Deep Ensembles (RDE) (Kim et al., 2023) mitigate reset-induced performance instability by using an ensemble of
networks; resetting each network in turn and allowing other networks to preserve information, while inducing plasticity
in the overall ensemble. Actions are selected using Q-value-weighted voting process, where each network’s proposed
action is weighted by the values assigned by the critic of the oldest network—the network that was last reset—in the
ensemble. While this improves performance stability, it also adds complexity by requiring additional hyperparameters.
Furthermore even though RDE helps mitigate plasticity loss, it does not fully prevent performance drops (see Figure 3,
blue curve).

3 METHOD AND RESULTS
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Figure 2: AltNet maintains two networks, A; and Ag, which share a replay buffer and alternate roles over time. Initially,
A (dark green) is active and collects experience by directly interacting with the environment and updating its parameters
based on such experiences and a shared experience replay buffer. During this period Ay (light green) remains passive
but undergoes off-policy updates. At every ResetFreq steps, the active network is reset and becomes passive, while
the previously passive network becomes active and is allowed to directly interact with the environment. This cyclic
alternation enables frequent resets to maintain plasticity without sacrificing stability.

AltNet is built on two key insights: that resetting a neural network initializes it to a highly plastic state, from which
it may be able to learn a better policy, as compared to a trained network, and that using highly trained networks for
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interaction with the environment prevents performance collapse. To combine the benefits of both, AltNet introduces a
simple dual-network architecture that allows frequent resets to occur while avoiding performance instability.

AltNet is composed of two networks that alternate roles at a fixed, predetermined interval, ResetFreq. At any given
time, the active network interacts with the environment, while the passive network learns off-policy from the experiences
of the active network and the replay buffer. Every ResetFreq steps in the environment, the active network is reset
and becomes the passive network and vice versa. This resetting makes the learning system highly plastic and thus able
to incorporate new information, allowing AltNet to maintain plasticity throughout training.

A key idea underlying the AltNet architecture that of decoupling recently reset networks from environment interaction.
Methods based on full-resetting often suffer sharp drops in performance when resets are applied (see ??, green curve).
AltNet mitigates this by making recently-reset networks passive, requiring them to learn before being allowed to act
again. When the passive network is promoted to the active role, it has already been trained off-policy and thus acts
competently from the outset, ensuring performance stability.

Furthermore, AltNet depends on a single hyperparameter, ResetFreqg which controls network resets and role-
switching and avoids additional hyperparameters present in other methods, such as RDE, which in addition to
ResetFreq, require a hyperparameter to determine how strongly each component of the ensemble influences
action selection. Additionally, since only one network acts at a time in AltNet, it does not require complex integration
logic and ensemble-based voting, resulting in a simpler and more robust method.

Despite its simplicity, AltNet matches or outperforms the Reset Deep Ensembles, as well as full-reset and Soft Actor
Critic (SAC) baselines when evaluated in hopper-hop from the DeepMind Control Suite (Tassa et al., 2018). As
shown in Figure 3, AltNet (green) learns faster early on, especially at a replay ratio of 1, achieving higher returns more
quickly than SAC (red), Vanilla Reset ( ), and RDE (blue).

Our experiments demonstrate that frequent resetting, not ensemble diversity, is the primary cause of the performance of
multi-network resetting systems. By explicitly decoupling reset networks from direct interaction with the environment,
AltNet is able to perform significantly more resetting than other methods. This design leads to faster learning and
higher final performance, effectively avoiding the problems with changing data, high replay ratios, and early training
dynamics.
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Figure 3: Performance comparison on the hopper—hop domain from the DeepMind Control (DMC) Suite (Tassa
et al., 2018). AltNet outperforms state-of-the-art methods like reset (Nikishin et al., 2022) and RDE (Kim et al., 2023)
designed to preserve plasticity, as well as a plasticity unaware baseline like SAC. Returns are averaged over 10 random
seeds and reported every 10,000 environment steps. Shaded regions show the standard error at each point. AltNet uses
a reset frequency of 2 x 10, while RDE and Reset use 4 x 10°. AltNet benefits from more frequent resets, unlike the
other two methods, due to the isolation of reset networks from the environment. Complete hyperparameter tables are
provided in Appendix A (Table 1 and Table 2)

4 CONCLUSION AND FUTURE WORK

We introduce AltNet, a simple and robust reset-based alternating network approach which induces plasticity while
maintaining stability. In the future, we plan to extend AltNet to explore more complex domains and real-world
environments, develop adaptive reset schedules that respond dynamically to learning and environmental changes, and
deepen the theoretical understanding of the interplay between resets, plasticity, and learning dynamics.
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A APPENDIX
A.1 HYPERPARAMETERS USED IN OUR EXPERIMENTAL SETUP

Table 1: Hyperparameters for RDE and SAC on the Hopper-Hop domain.

Hyperparameters Value
# of ensemble network 2
Training steps 1 x 10°
Discount factor 0.99
Warm up period 5000
Minibatch size 1024
Optimizer Adam
Optimizer : learning rate 0.0003
Networks : activation ReLU
Networks : n. hidden layers 2
Networks : neurons per layer 1024
Initial Temperature 1
Replay Buffer Size 1 x 10°
Updates per step (Replay Ratio) (1, 4)
Target network update period 1

7 (Polyak update) 0.005

Reset Frequency (gradient steps) 4 x 10°
3 (action select coefficient) 50

Table 2: Hyperparameters for AltNet and SAC on the Hopper-Hop domain.

Hyperparameters Value
# of network 2
Training steps 1 x 108
Discount factor 0.99
Initial collection steps 5000
Minibatch size 1024
Optimizer Adam
Optimizer : learning rate 0.0003
Networks : activation ReLU
Networks : n. hidden layers 2
Networks : neurons per layer 1024
Initial Temperature 1
Replay Buffer Size 1 x 108
Updates per step (Replay Ratio) (1, 4)
Target network update period 1

7 (Polyak update) 0.005
Reset Frequency (gradient steps)  see below
—Replay ratio 1 1 x10°
—Replay ratio 4 2 x 10°

Note: We experimented with reset frequencies of 1 x 105, 2 x 10°, and 4 x 10° for AltNet and RDE, and report results
using the best-performing value. AltNet performs better at higher reset frequencies because the network that is just
reset does not interact with the environment before the next reset or role switch occurs. Thus, we want the still-plastic
network to become the active network relatively quickly. Moreover, the required reset frequency is sufficient for the
passive network to regain stability.
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